Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle.
نویسندگان
چکیده
We hypothesized that levodopa with carbidopa, a common therapy for patients with Parkinson's disease, might contribute to the high prevalence of insulin resistance reported in patients with Parkinson's disease. We examined the effects of levodopa-carbidopa on glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in skeletal muscle, the predominant insulin-responsive tissue. In isolated muscle, levodopa-carbidopa completely prevented insulin-stimulated glycogen accumulation and glucose transport. The levodopa-carbidopa effects were blocked by propranolol, a beta-adrenergic antagonist. Levodopa-carbidopa also inhibited the insulin-stimulated increase in glycogen synthase activity, whereas propranolol attenuated this effect. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was reduced by levodopa-carbidopa, although Akt phosphorylation was unaffected by levodopa-carbidopa. A single in vivo dose of levodopa-carbidopa increased skeletal muscle cAMP concentrations, diminished glycogen synthase activity, and reduced tyrosine phosphorylation of IRS-1. A separate set of rats was treated intragastrically twice daily for 4 wk with levodopa-carbidopa. After 4 wk of treatment, oral glucose tolerance was reduced in rats treated with drugs compared with control animals. Muscles from drug-treated rats contained at least 15% less glycogen and approximately 50% lower glycogen synthase activity compared with muscles from control rats. The data demonstrate beta-adrenergic-dependent inhibition of insulin action by levodopa-carbidopa and suggest that unrecognized insulin resistance may exist in chronically treated patients with Parkinson's disease.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle
Smith, Jill L., Jeong-Sun Ju, Bithika M. Saha, Brad A. Racette, and Jonathan S. Fisher. Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle. J Appl Physiol 97: 2339–2346, 2004; doi:10.1152/japplphysiol.01219.2003.—We hypothesized that levodopa with carbidopa, a common therapy for patients with Par...
متن کاملGlucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation.
We varied rates of glucose transport and glycogen synthase I (GS-I) activity (%GS-I) in isolated rat epitrochlearis muscle to examine the role of each process in determining the rate of glycogen accumulation. %GS-I was maintained at or above the fasting basal range during 3 h of incubation with 36 mM glucose and 60 microU/ml insulin. Lithium (2 mM LiCl) added to insulin increased glucose transp...
متن کاملProlonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle.
Increased flux through the hexosamine biosynthetic pathway and increased O-linked glycosylation (N-acetylglucosamine [O-GlcNAc]) of proteins have been implicated in insulin resistance. Previous research in 3T3-L1 adipocytes indicated that insulin-stimulated glucose uptake and phosphorylation of Akt were reduced after incubation with O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcar...
متن کاملAcute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity ...
متن کاملAmylin-mediated inhibition of insulin-stimulated glucose transport in skeletal muscle.
We examined the effects of amylin on 3- O-methyl-d-glucose (3- O-MG) transport in perfused rat hindlimb muscle under hyperinsulinemic (350 μU/ml, 2,100 pmol/l) conditions. Amylin at 100 nmol/l concentration inhibited 3- O-MG transport relative to control in all three basic muscle fiber types. Transport decreased in slow-twitch oxidative (from 5.65 ± 1.13 to 3.46 ± 0.71 μmol ⋅ g-1 ⋅ h-1), fast-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2004